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1.  Summary 
 
We have been carrying out research on the task of representing, reasoning and learning about 
network interruptions.  We have developed a distributed system whereby each node in the 
network monitors itself in real-time and develops and model of its normal traffic behavior.  
When a connection error occurs, the originating node sends an error report to a limited set of 
relevant nodes.  Each node tracks these error messages that are passed through the network and 
in conjunction with its internal model of the network, infers the likely location of the network 
interruption with a probabilistic model. 
 
To test our system, we have developed a network simulator that automatically creates arbitrary 
sized networks and generates traffic according to a specified probability distribution.  The 
number of end nodes per major hub is a parameter that can be set from 10 to 1000.  We injected 
faults into this network and monitored the ability of individual nodes to detect the fault.  From 
experimental runs with the simulator we have observed the following. 
 

• Local diagnosis of distant connection problem is feasible. 

• The communication overhead to send error messages is small compared with regular 
traffic. 

• Nodes in the network do not have equal ability to infer problems correctly.  The nodes 
tend to “specialize” and are better able to detect errors in nodes with which they typically 
exchange more traffic than average. 

• The memory overhead to implement this system is large but does not grow as the 
simulation runs.  The cost is also distributed across the network. 

 
We believe future research on this topic should concentrate on extending the representational 
power of the models used to represent traffic flows with the goal of detecting a wider variety of 
connection problems. 
 

2.  Introduction 
 
In this project, we created a simple demonstration system to test the feasibility of learning in the 
presence of distributed information (as would be the case for a knowledge-plane construct).  
Specifically, we examined the following problem. 
 

Given a network of nodes that can monitor themselves and communicate, build a 
distributed system that automatically detects connection errors and propagates this 
information as needed. 
 

We believe a distributed system is necessary and even advantageous in many respects.  Although 
a centralized solution is possible, it is less desirable because it requires communication with a 
central node which may not be accessible if there are network problems.  Furthermore a 
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distributed system will spread out the cost of implementation.  From this study we hope to 
achieve three things. 
 

1. Demonstrate that distributed diagnosis is feasible. 

2. Gain a qualitative understanding of issues involved with construction of such a 
system. 

3. Identify open problems and tasks for future research. 

 

2.1  Current Practice 
 
A common method of identifying failed network connections is to use the tool traceroute which 
tracks the path that packets take to the destination.  Traceroute works well but has some 
important limitations: 
 

1. Traceroute cannot detect intermittent problems.  It only determines if a connection can be 
made right now. 

2. Not all routers provide the information that traceroute needs.  E.g., some fail to observe 
“time to live” or do not respond at all (causing traceroute to time out) 

3. Traceroute does not tell if a specific service is available but only if the nodes respond to 
ICMP. 

4. If the destination node is a popular site (e.g., CNN), multiple requesting sites all 
performing traceroute will result in heavy bandwidth. 

5. There is no extension path from traceroute to more sophisticated models that would allow 
reasoning about other network characteristics.  Thus, it would be difficult to extend a 
traceroute system to serve requests like “Schedule my download of file X when the 
connection to node Y is fastest”. 

 

3.  Methods, Assumptions, and Procedures 
 
We assume that the network is instrumented with think-points (TP) [2] at major hubs 
(autonomous systems) and end user stations.  Each TP is self contained reasoning unit that can 
observe network traffic through that point.  Furthermore, when a node makes a traffic request 
that fails to reach its destination (no return information) each TP can generate an error message 
that is propagated to other nodes in the network.  
 
In general terms, our framework for detecting network failures works as follows: 
 

• Each TP learns a model T of its traffic. 

• Each TP learns a model E of recent failed requests. 
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• Given T and E the TP infers the state of the network. 

 
In this report, we will assume that the only failure mode is a site going completely offline, in 
which case it can neither receive nor forward messages.  Each TP develops a hierarchical model 
of its own traffic and errors. When a connection error occurs the source node propagates an error 
message to TPs along the same routing path as the initial request.  By examining the traffic and 
error each node can reason about the network state.   
 
We discuss an example which shows how the system might work at a general level and then we 
describe the components in greater detail. 
 

3.1  Example Problem 
 
We illustrate our ideas with an example problem.  Consider a system composed of four 
autonomous systems (AS): A, B, C, and D and shown in Figure 2.  Each AS is connected to a 
variety of lower level nodes (e.g., a1, a2, a3 etc); the lower nodes for B and D are not shown for 
clarity reasons.  We will use uppercase letters for autonomous systems and lowercase for end 
nodes.  Each AS may have many associated end nodes.  Finally, each AS has an associated TP 
which can observe and reason from its observations. 
 
 

 

A B C

D

a1 a2 a3

c1

c2

c3

A B C

D

a1 a2 a3

c1

c2

c3

 
Figure 1:  Example Network 

 
Suppose the node a1 makes a request of node c1, which under working conditions would be 
routed along the path {a1, A, B, C, c1}.  However, there is an error in the network and a1 
receives no response from c1.  Once a1 determines that its attempt to connect to c1 has failed 
(i.e., no response after a fixed time limit), the TP at node a1 then generates an error report and 
sends it along the same route as the request.  Note that both the traffic request and error message 
will be forwarded along the routing path until it encounters a failed node.  Each node on the path 

 3



 

takes note of a1’s trouble report and updates its own statistics about the nodes that have 
connection errors. 
 
The network outage could be at several locations along the path from a1 to c1, and possible 
candidates are a1, A, B, C, or c1.  The TP at a1 can infer based on T and E the likely location of 
the fault with the following type of reasoning. 
 

• If a1 does a lot of traffic with c2, and there are no failures a1-c2 then a1 can conclude that 
the outage is at c1.  To reach c2 the path {a1, A, B, C} must be operational and thus the 
error has to be at c1. 

 
• If a1 also experiences many other failed requests to nodes such as B or D then the error 

may be closer in the network (e.g., B). 
 

• If a1 can not communicate with any other node, then the error is probably with a1 itself. 
 
The TP at A also repeats this analysis process.  However, A processes much more traffic as it 
routes messages from a2 and a3 in addition to a1.  Thus A should be able to better distinguish the 
failure cause since it has more observations from which to make an inference.  Likewise, the 
other nodes that receive the error message (i.e., B and D) also attempt to infer the error location. 
 
In the next two sections, we discuss how the TPs can model their traffic and errors, and how they 
can use this information to reason probabilistically about the possible faults. 
 

3.2  Traffic and Error Models 
 
We model the traffic and errors with a two-level hierarchy.  Each node keeps track of the traffic 
going to any destination (end node) and the corresponding AS.  We assume that every message 
sent has an address that can be decoded into an AS and end node. 
 
The TPs keep track of the traffic to the various destinations with an exponentially weighted 
moving average: 
 

)1)(,())(1,(),( λλ −+−= tnMtnTtnT    (1) 
 

The function T(n,t) represents the estimated traffic demand to node n at time t and is a weighted 
sum of the previous traffic estimate plus the messages sent to n at time t.  The variable λ is a 
decay constant and should be set between zero and one.  For our experiments, 0.9 was used as 
the value of λ.  The exponentially weighted moving average has the advantage of being 
extremely simple to update and requires recording only one number per destination. 
 
We store the traffic counts for different destinations in a hash structure which allows fast access 
and retrieval of counts.  However, as a node makes requests to different destinations, the number 
of counters needed may grow.  To prevent the size of the data structure necessary to store the 
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traffic numbers growing too large, addresses with small scores are deleted from the structure.  
Thus for example, a rare traffic destination would be quickly removed from the data structure. 
 

3.3  Reasoning about errors 
 
We treat the reasoning problem as a classification problem where the classes correspond to the 
possible failure states of the network.  Each TP maintains a structure of traffic and errors, and 
from these can infer potential outages in the network.  The TP then selects the class that is most 
probable given the observations.   
 
We use a naive Bayesian classifier to perform the inference [1].  The naive Bayesian classifier is 
based on Bayes rule which states 
 

)(
)()()(

xP
cPcxPxcP =       (2) 

 
i.e., the probability of a class c given an observation vector x is proportional to the probability of 
x given c.  The term x corresponds to the requests that were either successful or failures and can 
be computed from T and E.  The naive Bayesian classifier makes the assumption that all 
observations are independent given the class and thus 
 

)(
)()()(

xP
cPcxPxcP iiΠ

=      (3) 

 
For each AS and its associated end nodes we consider two cases.  The first is that the AS itself is 
broken.  If a node is broken we expect that with probability δ a traffic request will result in an 
error, and 1 – δ no error.  Note that δ is not set to zero because the exponentially weighted 
moving average incorporates information from the recent history of traffic and thus even if the 
node is now working correctly, the estimate may include past errors.  For a hub failure we define 
 

)()1(*)( ete
hubi

i
cxP −−=Π δδ     (4) 

 
Where t and e represent the total counts from the traffic models for the hub of interest. 
 
The second case we consider is that some individual end nodes are broken but the AS is fine.  
We model the joint probability of the individual end nodes generating the observations as the 
product of the probabilities for those individual nodes that are hypothesized to be working or 
experiencing a failure. 
 

)()( )1(*)1(*)( iiiiii ete

ifailed

ete

iworking
nodesi

i
cxP −

∈

−

∈

−−= ΠΠΠΠΠ γγδδ   (5) 

 
Where ti and ei represent the total counts to each end node, and γ is the probability of observing 
an error for a working node. 
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4.  Results and Discussion 
 
In this section, we discuss experiments with our system in detecting network errors.  We note 
that we are most concerned with discovering qualitative behaviors of the system and not detailed 
quantitive comparisons. 
 
We implemented our system in C++ and ran experiments under UNIX.  We generated random 
networks that varied the number of AS and end nodes.  Additionally, traffic was generated by 
randomly selecting the origin and destination according to a non-uniform distribution. 
 
We experimented with several fixed structures as in Figure 1, as well as randomly generated 
networks where we inserted faults.  The network ranges in size from a small system with 4 AS 
and approximately 10 end nodes per AS to 100 AS each with 100 end nodes. 
 
We present here the results of a simulation run on Figure 1 where a network error was injected at 
node C.  Figure 2 shows the inferred errors for the TP located at nodes B, b3 and A.  From the 
graph, we make the following conclusions. 
 
 

time

True C

B C

b3 Cc3

A C
c2 c2 c3

 
 

Figure 2:  Simulation trace with a network error.  The timelines show the inferred error by the TPs at points 
B, b3, and A. 

 
 

• All nodes were able to detect a failure in node C. 

• There is a lag in detecting the failure.  This is a direct result of using a moving average to 
store traffic and error information. 
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• Each TP has good statistics for nodes “close” to it and therefore can more accurately 
diagnose problems.  For instance, the TP at B performed much better than b3 or A. 

 
We ran several simulations varying the size of the network, as well as the errors that could occur.  
In all cases the extra overhead for sending error measurements was small and typically less than 
10% of the total traffic.  The overhead for storing the memory needed for the traffic and error 
models was large but fixed and did not grow as time passes.  However, the cost is mitigated by 
the fact that the cost is distributed across many nodes in the network. 
 

5.  Limitations and Future Research 
 
Our experiments demonstrated that distributed learning of network failures was feasible. In this 
section, we discuss some of the approach’s limitations and directions for future research. 
 

• Incorporating state information.  Our representation in section 3.1 was stateless and did 
not consider the time ordering of examples.  The stateless representation means that it 
could be represented efficiently, but the drawback was that there was some lag in 
identifying failures. Storing the complete time history of traffic and errors could alleviate 
this problem but obviously requires greater memory.  An important task then would be to 
selectively remember certain facts. 

• Developing more sophisticated models of internet performance and classes of failures.  
Our models only tracked successful and failed connections between nodes in the network.  
There would be much benefit to tracking other characteristics such as latency or 
bandwidth.  This would require more sophisticated models, but would also allow 
inference on more complex queries. 

• Extending the available actions to the TP.  Currently, the TPs can only propagate error 
messages.  Other actions might request another node’s diagnosis of the problem. 

• Incorporating knowledge of topology into reasoning processes.  We assumed nodes could 
only tell which AS and end-nodes were associated, but not how the AS’s are connected.  
Knowledge of the topology would let more complex hypothesis about network failures be 
considered. 

 

6.  Conclusions 
 
We constructed a demonstration system and showed that distributed diagnosis of network faults 
was feasible.  In the distributed system, each end node becomes a detector of network faults and 
can signal when an error has occurred.  Experiments with a simulator showed that faults could be 
detected with a limited overhead for error messages and memory.  Future work should focus on 
the models used by each node to model the traffic and errors that occur. 
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